Best constant and Mountain-Pass solutions for a supercritical Hardy-Sobolev problem in the presence of symmetries

نویسندگان

چکیده

Given a Riemannian manifold (M,g) and group G of isometries (M,g), we investigate the existence G-invariant positive solutions u:M→R to nonlinear equation Δgu+au=u2⋆(k,s)−1dg(x,Gx0)s+huq−1 where Δg=−divg(∇). The singularity nonlinearity are such that problem is critical for Hardy-Sobolev embeddings. We prove by using Aubin minimization Mountain-Pass lemma Ambrosetti-Rabinowitz. As product our analysis, find value best-constant in associated inequality.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a comparative study of the theme of "marriage" in three victorian novelists: charles dickens, george eliot and thomas hardy

این تحقیق کوشیده است با انتخاب پنج رمان از میان آثار برگزیده، «چارلز دیکنز»، «جورج الیوت» و «توماس هاردی » و با رویکردی تطبیقی به بررسی درونمایه ی «ازدواج» در آثار این سه رمان نویس بزرگ دوره ی ویکتوریا بپردازد. فرضیه ی اولیه ی تحقیق این بوده است که چارلز دیکنز (1870- 1812) با زبانی شوخ و گزنده، جورج الیوت(1880- 1819) با نگاهی آموزشی–اندرزگونه و توماس هاردی(1928- 1840) با رویکردی تلخ وانتقادی به...

The Effect of Curvature on the Best Constant in the Hardy-sobolev Inequalities

when 0 < s < 2, 2 := 2∗(s) = 2(n−s) n−2 , and when 0 is on the boundary ∂Ω. This question is closely related to the geometry of ∂Ω, as we extend here the main result obtained in [15] by proving that at least in dimension n ≥ 4, the negativity of the mean curvature of ∂Ω at 0 is sufficient to ensure the attainability of μs(Ω). Key ingredients in our proof are the identification of symmetries enj...

متن کامل

Best Constant in Sobolev Inequality

The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...

متن کامل

The Best Constant in a Fractional Hardy Inequality

We prove an optimal Hardy inequality for the fractional Laplacian on the half-space. 1. Main result and discussion Let 0 < α < 2 and d = 1, 2, . . .. The purpose of this note is to prove the following Hardy-type inequality in the half-space D = {x = (x1, . . . , xd) ∈ R : xd > 0}. Theorem 1. For every u ∈ Cc(D), (1) 1 2 ∫

متن کامل

Optimal quadrature problem on Hardy-Sobolev classes

Let H̃r ∞,β denote those 2π-periodic, real-valued functions f on R, which are analytic in the strip Sβ := {z ∈ C : |Im z| < β}, β > 0 and satisfy the restriction |f (r)(z)| ≤ 1, z ∈ Sβ . Denote by [x] the integral part of x. We prove that the rectangular formula QN (f) = 2π N N−1 ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2023.127437